

Empower People to Live Quality Lives

Smart Mobility

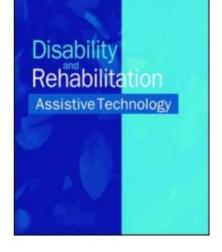
Summary of Keeogo Clinical Trials

Amy Tsou Clinical Specialist 2020/01/27

Keeogo's Patient Population

- Stroke
- Parkinson's Disease
- Knee Osteoarthritis
- Multiple Sclerosis

Keeogo Clinical Trials


Author/Date	Publication	Patient Population
Mcleod et al., 2017	Evaluation of the Keeogo Dermoskeleton	1) Mixed 2) Stroke
USFDA, 2019	The Evaluation of the Effectiveness and Safety of Keeogo Dermoskeleton in Subjects with Mobility Impairments Due to Stroke	
Cantin, 2012	Study of balance and walking capacity in patients with Parkinson's Disease	Parkinson's disease
McGibbon et al., 2018	activities in people with multiple sclerosis: an open-label	
McGibbon et al., 2017	Effects of an over-ground exoskeleton on external knee moments during stance phase of gait in healthy adults	Knee Osteoarthritis

Evaluation of Keeogo Part I

Evaluation of the KeeogoTM Dermoskeleton (Mcleod et al., 2017)

Subjects: 13 individuals with neurological impairments

Objectives:

- (1) Determine the functional characteristics of individuals with neurological impairments that may predict successful use of Keeogo
- (2) Quantify the specific benefit Keeogo provides to a regular user of the device

Evaluation of Keeogo Part I: Subjects

Table 1. Participant characteristics.

Subject ID	Gender	Age	Impairment/injury	Severity	Time from injury/ impairment (years)
1	М	65	iSCI	T10; ASIA: A	1
2	M	65	MS	EDSS: 6	4
3	F	20	CP	GMFCS: 1	n/a
4	F	57	MS	EDSS: 2	14
5	F	55	MS	EDSS: 4	24
6	M	65	Stroke	Spinal	2
7	F	20	Stroke	n/a	3
8	M	50	MS	EDSS: 6	6
9	F	56	MS	EDSS: 6.5	21
10	M	44	MS	EDSS: 2	19
11	M	65	CA	Progressive	12
12	M	55	iSCI	C2;ASIA: D	2
13	F	45	MS	EDSS: 2	19

iSCI: incomplete spinal cord injury; ASIA: American Spinal Cord Injury Association; MS: multiple sclerosis; EDSS: expanded disability status scale; CP: cerebral palsy; GMFCS: gross motor function classification system; n/a: not available; CA: cerebellar ataxia.

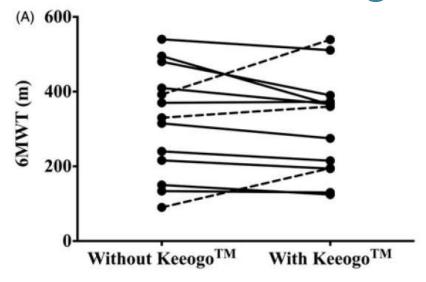
Evaluation of Keeogo Part I: Outcome Measures

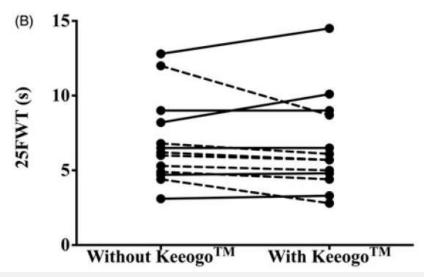
Primary Outcome Measures

- 6-Minute Walk Test (6MWT)
- 25-Foot Walk Test (25FWT)

Assess patient performance

WITH and WITHOUT Keeogo


Secondary Outcome Measures


- Timed Up-and-Go (TUG)
 Berg Balance Scale (BBS)

Identify patient baseline characteristics

Evaluation of Keeogo Part I: Outcome Measures

Primary Outcome Measures

- 6-Minute Walk Test (6MWT)
- 25-Foot Walk Test (25FWT)
 - Improvement of ≥ 5% in performance while wearing
 Keeogo → "responders"
 - Improvement of < 5% while wearing Keeogo →
 "nonresponders"

Evaluation of Keeogo Part I: Results & Conclusions

Table 3. Clinical criteria for responders and non-responders to KeeogoTM on primary outcome measures.

-18	6MWT		25FWT	
	Responders	Non-responders	Responders	Non-responders
TUG (s)	10.1 ± 2.2	12 ± 6.9	11.1 ± 4.4	12.1 ± 8.2
BBS (score)	50 ± 6	48 ± 6	50 ± 5	48 ± 8

6MWT: 6-min walk test; 25FWT: 25-foot walk test; TUG: timed up and go; BBS: Berg Balance Scale.

 Association between "responders" and "non-responders" for 6MWT, 25FWT and TUG, BBS

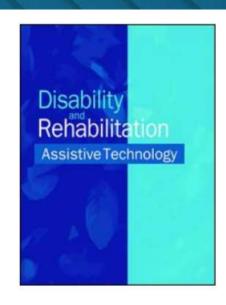
Evaluation of Keeogo Part I: Results & Conclusions

Table 4. Clinical criteria for responders, high-end- and low-end non-responders to KeeogoTM.

	Non-responders	Responders	Non-responders
TUG (s)	<8	8–12	>12
BBS (score)	<46	46-51	>51

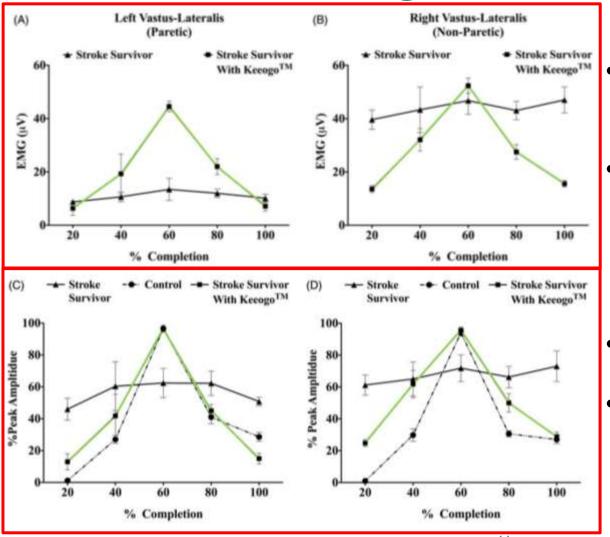
TUG: Timed Up and Go; BBS: Berg Balance Scale.

- Berg Balance Scale and Timed Up-and-Go test can be used to measure baseline characteristics of good responders to Keeogo
- Individuals with too severe or too do not benefit from Keeogo
- Individuals with **moderate impairment** \rightarrow respond **best** to Keeogo



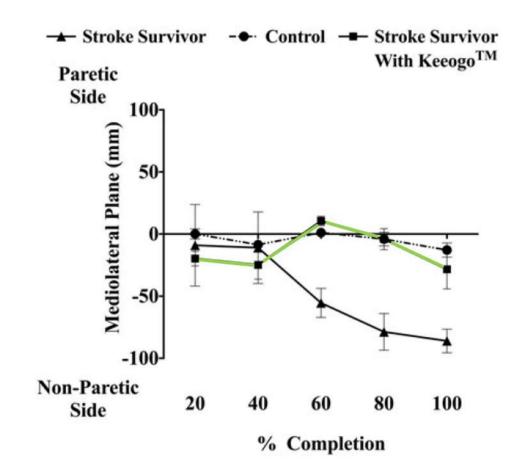
Evaluation of Keeogo Part II: Case Study

Subject: 20 year old stroke survivor (left hemiparesis)


Objective: To assess functional benefits (stair climb test and 30-second chair stand test) gained when wearing Keeogo[™] on day-to-day basis for 12 months under two conditions:

- With Keeogo
- Without Keeogo

Evaluation of Keeogo Part II: Results



- Increased knee extensor activity in paretic limb
- Knee extensor activation pattern more closely matched that of healthy control
- Increased confidence
- More direct effort in activating paretic limb

Evaluation of Keeogo Part II: Results

- CoP sway typically towards non-paretic limb
- Keeogo help corrects sway
- Increased load on paretic limb → improved postural control

Evaluation of Keeogo Part II: Results & Conclusions

		Stroke survivor		
	Control	Without Keeogo TM	With Keeogo TM	
SCT (s)	6.92	47.83	8.83	
30CST (# of reps)	16	8	13	

SCT: stair climb test; 30CST: 30-s chair stand test.

- Improved symmetry in lower extremity muscles during sit to stand
- Capable of loading more weight on paretic limb

 rise from chair in more symmetrical fashion with Keeogo

Keeogo in Stroke (USFDA): Unpublished Study

The Evaluation of the Effectiveness and Safety of Keeogo Dermoskeleton in Subjects with Mobility Impairments Due to Stroke (USFDA, 2019)

Subjects: 48 chronic stroke patients (ages 58 ± 10 , median 40 months since CVA, 23 female)

Objective: To evaluate the safety of Keeogo and its effectiveness in chronic stroke patients

- Safety for patient and PT
- Device effectiveness

Keeogo in Stroke (USFDA): Study Design

- Multi-site study
- Open-label study (no blinding, masking, or random assignment)
- Intra-subject comparison
- No control group
- Intervention duration: 9 days

Week 1 (Visit 0)

Subject enrollment

Week 1 (Visit 1-3) Familiarization and baseline data collection (no Keeogo)

Week 2 (Visit 4-6) • Fitting and familiarization with Keeogo (3 sessions)

Week 3 (Visit 7-9)

 Performance assessments with Keeogo (3 sessions)

Keeogo in Stroke (USFDA): Outcome Measures

- Walking performance (Wisconsin Gait Scale, WGS)
- Patient Rated Outcomes (PRO)
- Clinician Rated Outcomes (ClinRO)
- Knee strength (30 second chair test, 30SCT)
- Stairs ability (Timed stair test, TST)
- Spatiotemporal variables
- Disability measures (FMA-LE, BBS, MAS)

Keeogo in Stroke (USFDA): Results and Conclusions

- Improved gait
 - 2.6 improvement in Wisconsin Gait Scale (15% above MCID)
 - 37% reduction in gait deficit
- Improved stability against falls
- Improved stair performance for 70% of patients
 - Improved time (decrease by 7.15 s, compared to baseline 36.6 s)
- Improved knee strength*
 - Increased repetitions (11 to 15) for 30SCT

Keeogo in Parkinson's Disease

Study of balance and walking capacity in patients with Parkinson's Disease (Cantin, 2012)

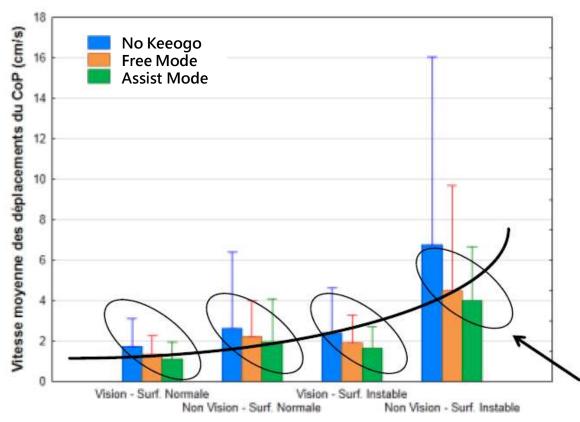
Subjects: 3 patients

Objective: To evaluate walking capacity and balance under 3 conditions:

- Without Keeogo
- With Keeogo (free mode)
- With Keeogo (assist mode)

- 53 years old
- Diagnosed ≈ 10 yrs
 Beginner
- Medicated

- 56 years old
- Slightly medicated


- 61 years old
- Diagnosed ≈5 yrs
- Not medicated

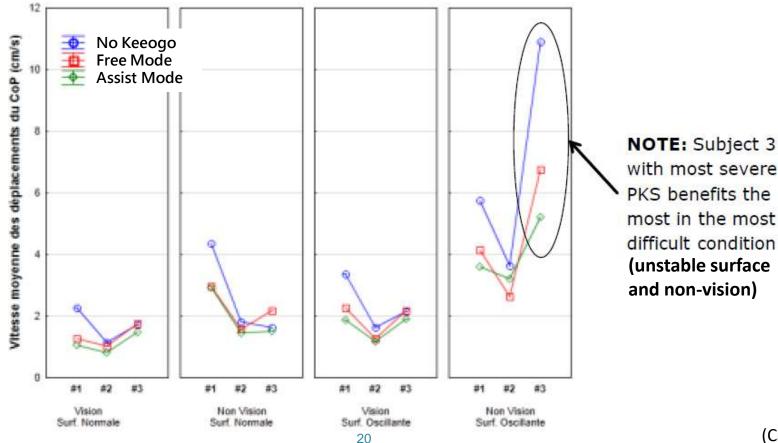
Keeogo in Parkinson's Disease: Results

Oscillation Speed

Reduction in oscillation speed for most of the cases

POSITIVE TREND towards improvement in balance when wearing Keeogo in assist mode (green bars)

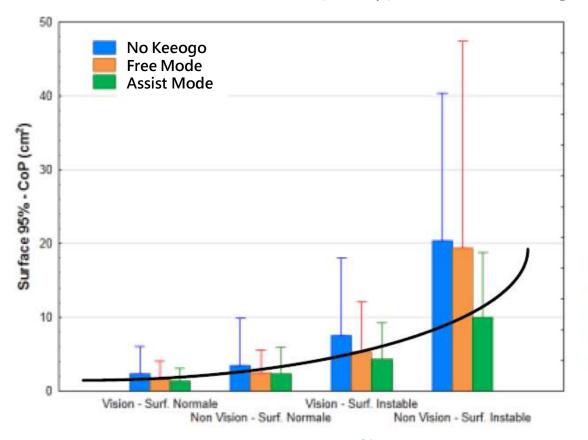
NOTE: Decrease in average oscillation speed for all of the conditions.


(Cantin, 2012)

Keeogo in Parkinson's Disease: Results

Oscillation Speed

Trend between disease severity and dermoskeleton efficiency



Keeogo in Parkinson's Disease: Results

Oscillation Surface

Decreased oscillation surface (sway) when wearing Keeogo in assist mode

NOTE: Trend in decreased oscillation surface across the board in assisted mode.

Keeogo in Parkinson's Disease: Conclusions

- Keeogo on assist mode → improvement in balance
- Trend between disease severity and dermoskeleton efficiency
- Straighter more stable posture
- More solid ankles
- Less hand tremor

Keeogo in Multiple Sclerosis

Evaluation of the Keeogo exoskeleton for assisting ambulatory activities in people with multiple sclerosis: an open-label, randomized, cross-over trial (McGibbon et al., 2018)

Subjects: 29 patients with MS (randomized into group A and B)

Objective: Examine the immediate performance effects when using Keeogo and the potential benefits of using Keeogo at home for 2 weeks

- Performance Effect
- Activity Effect
- Rehab Effect
- Training Effect

Keeogo in Multiple Sclerosis

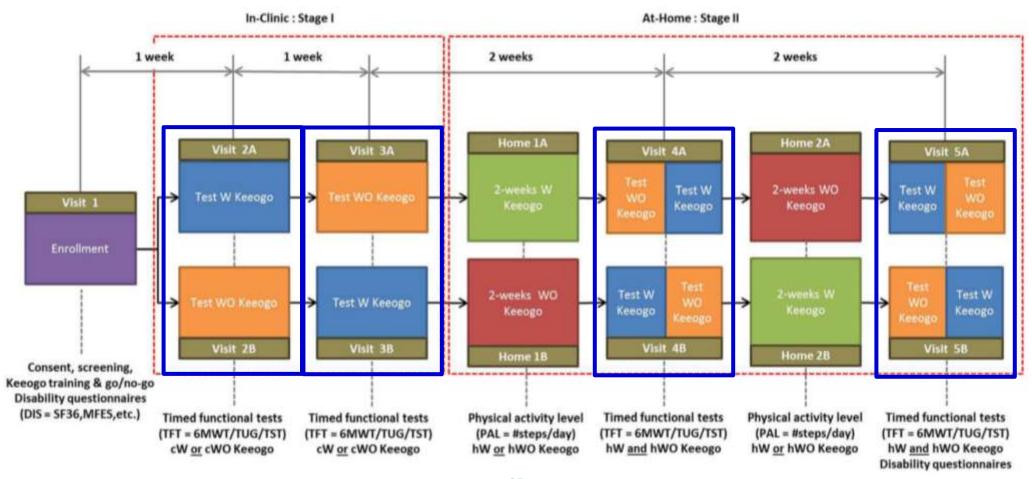
Performance Effect Improvements in physical performance while wearing Keeogo

Activity Effect

Improvements in physical activity levels while using Keeogo at home for 2 weeks

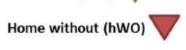
Rehab Effect

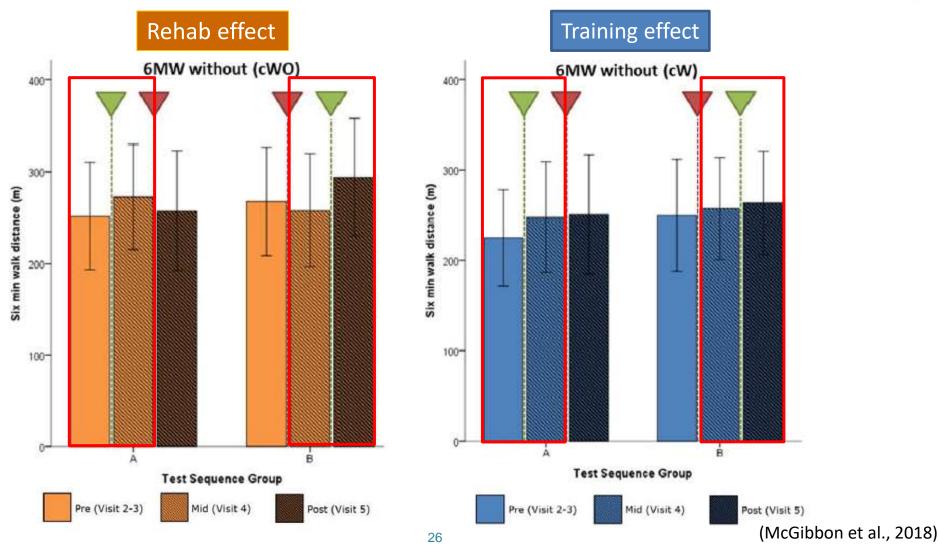
Improvements in physical performance without Keeogo AFTER using Keeogo at home for 2 weeks


Training Effect

Improvements in physical performance with Keeogo AFTER using Keeogo at home for 2 week

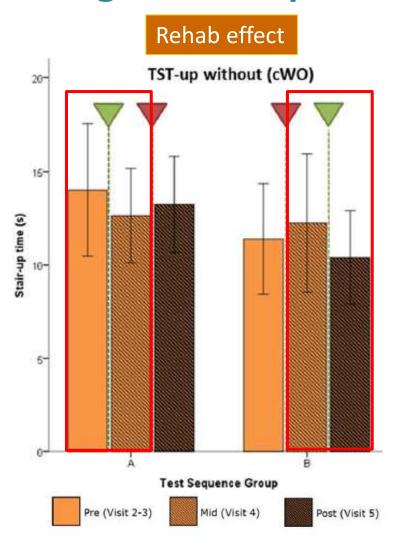
Keeogo in Multiple Sclerosis: Study Design

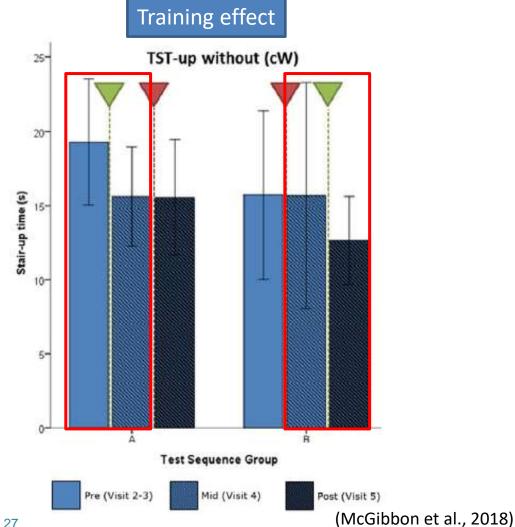

2x2 cross-over approach



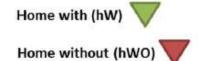
Home with (hW)

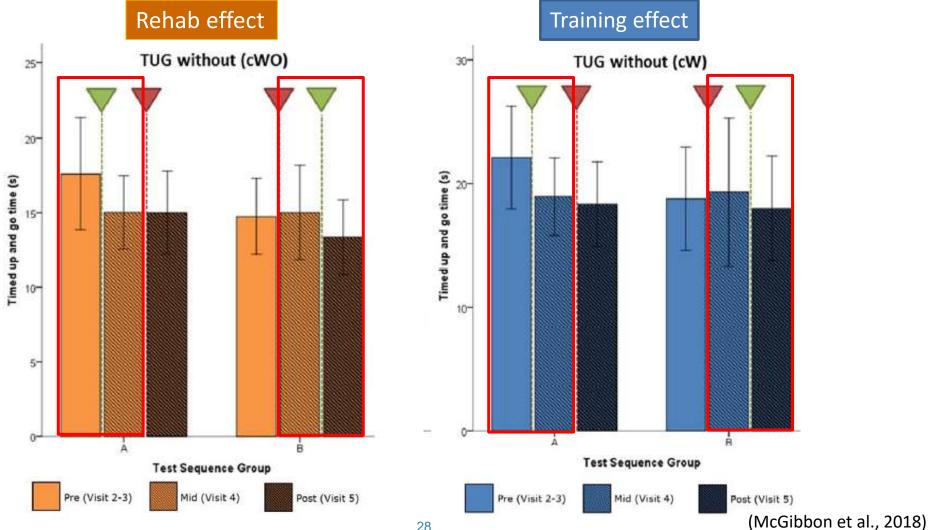
Keeogo in Multiple Sclerosis: Results





Home with (hW) Home without (hWO)


Keeogo in Multiple Sclerosis: Results



Keeogo in Multiple Sclerosis: Results

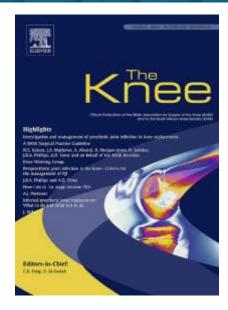
Keeogo in Multiple Sclerosis: Results

Improved <u>unassisted walking endurance</u>
Improved unassisted stair climbing performance

Rehab Effect

Improved use of Keeogo during functional activities

Training Effect


Keeogo in Multiple Sclerosis: Conclusions

- Patients walked slower when wearing Keeogo
- Increased use of Keeogo at home → improvement in unassisted physical function
- Patients improved use of Keeogo in performing functional activities
- Rehab and Training effects <u>positively correlated</u> with Keeogo training

Keeogo in Knee Osteoarthritis

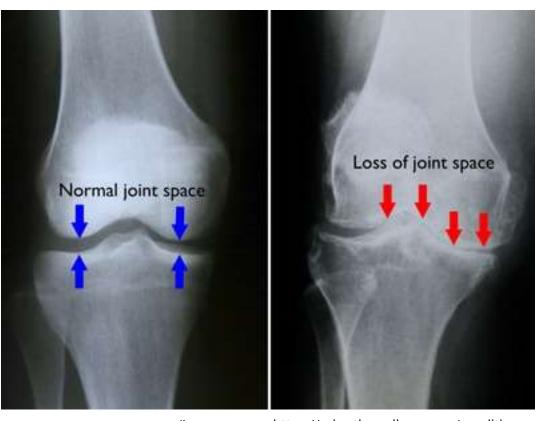
Effects of an over-ground exoskeleton on external knee moments during stance phase of gait in healthy adults (McGibbon et al., 2017)

Subjects: 13 healthy participants

Objective:

- (1) Quantify and evaluate how Keeogo modifies knee biomechanics
- (2) Apply in the context of knee osteoarthritis

Keeogo in Knee Osteoarthritis: Results


- Patients took shorter, wider steps
- Keeogo <u>decreases knee</u>
 <u>adduction moment</u> →
 favorable biomechanical
 environment for the OA knee

Keeogo in Knee Osteoarthritis: Conclusions

- Frontal plane misalignment in KOA causes increased knee adduction moment (KAM)
 - Strong predictor of progression of medial compartment KOA
 - Non-responsive to muscle strengthening
- Reduction of KAM creates favorable circumstances for conservative management

(Image source: https://roberthowells.com.au/conditions-and-treatment/knee-osteoarthritis-overview/)

Keeogo in Knee Osteoarthritis: Conclusions

- Reduces muscle co-contraction

 beneficial for neuromuscular training
- Reduce knee loading
- Enable greater physical activity

Applicable Outcome Measures

Walking performance

- Gait speed (10-Meter Walk Test or 25-Foot Walk Test)
- Endurance (6-Minute Walk Test)
- Timed Up-and-Go

Stairs ability

- Timed Stair Test
- Stair Climb Test (SCT)

Lower body strength

- 30 Second Chair Stand Test (30CST)
- 5 Times Sit-to-Stand (FTSST)
- Disability measures (FMA-LE, BBS, MAS)

Concluding Remarks

- Safe for chronic stroke, Parkinson's disease, multiple sclerosis, and knee OA patients
- Improvement performance in gait and stairs
- Improved stability and balance in lower extremities
- Improved symmetry in lower extremity muscle activation and weight-bearing
- Increased use of Keeogo → greater improvement in unassisted physical function
- Increases confidence in the user

Concluding Remarks: Limitations

- More familiarization time with Keeogo may be needed
- Inherent stiffness may lead to slower walking speed and widening of base of support

Integrity. Growth. Together.

wistron

Wistron Medical Technology

Thank You